Световая волна

- электромагнитная волна видимого диапазона длин волн (см. Свет). Частота световой волны (или набор частот) определяет "цвет". Энергия, переносимая световой волной, пропорциональна квадрату ее амплитуды.

Интенсивностью световой волны I

- называют среднее значение модуля вектора Пойнтинга. Время усреднения либо считают равным времени регистрации света, либо равным постоянной времени приемника света. Поскольку для бегущей волны векторы и  перпендикулярны, модуль вектора Пойнтинга можно найти по формуле . Если еще учесть, что , то получим выражение . Следовательно для интенсивности можно записать , где скобки означают среднее по времени значение. Эта формула приближенно верна и при сложении почти однонаправленных световых волн.

Световые лучи

Изображая распространение света на чертежах, световые пучки обычно заменяют лучами. Световой луч - это линия, указывающая направление распространения энергии в пучке света. Луч является геометрической моделью физического понятия "пучок света".
Характерной особенностью светового луча, как и луча геометрического, является его прямолинейность. Однако, между ними есть и принципиальное различие: геометрический луч прямолинеен всегда, а луч света - только в прозрачной однородной среде. Фа?зовая ско?рость — скорость перемещения точки, обладающей постоянной фазой колебательного движения, в пространстве вдоль заданного направления. Обычно рассматривают направление, совпадающее с направлением волнового вектора, и фазовой скоростью называют фазовую скорость, измеренную именно в этом направлении, если противное не указано явно (то есть если явно не указано направление, отличное от направления волнового вектора).

Фазовая скорость электромагнитной волны

Для электромагнитной волны любой частоты (по крайней мере, в тех диапазонах частот и интенсивностей, которые исследованы) фазовая скорость, измеренная в направлении волнового вектора, всегда равна одной и той же величине — скорости света в вакууме, универсальной константе.
В средах закон дисперсии электромагнитных волн достаточно сложен, и фазовая скорость может заметно меняться.
Фазовая скорость может превосходить скорость света в вакууме, и нередко ее превосходит. Это никак не противоречит известному принципу максимальности скорости света, необходимость которого возникает чтобы одновременно соблюдались принцип причинности (чтобы не возникало причинных парадоксов) и принцип относительности (лоренц-инвариантность).
Дело в том, что эти принципы накладывают ограничение только на скорость распространения таких физических объектов, посредством которых можно передать информацию. А фазовая скорость[6] не относится к скоростям таковых объектов. Чисто монохроматическая (синусоидальная) волна бесконечна в пространстве и во времени, не может никак измениться, чтобы передать информацию (если мы промодулируем волну, она перестанет быть монохроматической, а скорость распространения модуляции — не совпадает с фазовой скоростью, обычно совпадая со скоростью групповой для почти монохроматических волн).
Легко видеть, что скорость волны де Бройля (см. выше) всегда больше скорости света (даже в направлении волнового вектора). Что не мешает волновым пакетам волн де Бройля иметь скорость распространения всегда меньшую скорости света, а в классическом пределе частицы, описываемые такой волной, конечно же, также движутся медленнее света (безмассовые — со скоростью света, но не быстрее).
Кроме того, поскольку фазовая скорость, измеренная вдоль произвольного направления, не совпадающего с волновым вектором и направлением распространения волны, не является скоростью движения «физического объекта», то есть, объекта, состояние которого в последующие моменты времени причинно обусловлено состоянием в предыдущие, а по сути характеризует просто состояние осциллирующего поля в искусственно выбранных точках, часто (а именно если выбрать достаточно большой угол с волновым вектором), фазовая скорость по данному направлению любой, даже сколь угодно медленной (как показано в параграфе выше), волны может превышать скорость света, стремясь к бесконечности при стремлении угла к прямому.
В частности, фазовая скорость света (или вообще любой бегущей электромагнитной волны) в вакууме, измеренная по любому направлению, не совпадающему с ее волновым вектором, всегда больше скорости света.

Групповая скорость

— это кинематическая характеристика диспергирующей волновой среды, обычно интерпретируемая, как скорость перемещения максимума амплитудной огибающей узкого квазимонохроматического волнового пакета.

Опыт Физо

Луч от источника разделяется полупрозрачной пластинкой на два луча, один из которых, отражаясь от зеркал, проходит через текущую в трубах воду по направлению её движения, а другой — против её движения. После этого оба луча попадают в интерферометр, где и наблюдается интерференционная картина. Измерения производились сначала при неподвижной воде, а затем — при движущейся. По смещению интерференционных полос определялась разность времён прохождения лучей в движущейся и неподвижной среде, а следовательно, и величина ~\alpha.

ПОКАЗАТЕЛЬ ПРЕЛОМЛЕНИЯ

, или КОЭФФИЦИЕНТ ПРЕЛОМЛЕНИЯ - отвлеченное число, характеризующее преломляющую силу прозрачной среды. Показатель преломления обозначается латинской буквой ? и определяется как отношение синуса угла падения к синусу угла преломления луча, входящего из пустоты в данную прозрачную среду:
n = sin ?/sin ? = const или как отношение скорости света в пустоте к скорости света в данной прозрачной среде: n = c/?? из пустоты в данную прозрачную среду. Показатель преломления считается мерой оптической плотности среды.
Определенный таким образом показатель преломления называется абсолютным показателем преломления, в отличие от относительного т. е. показывает, во сколько раз замедляется скорость распространения света при переходе его показателя преломления, который определяется отношением синуса угла падения к синусу угла преломления при переходе луча из среды одной плотности в среду другой плотности. Относительный показатель преломления равен отношению абсолютных показателей преломления: n = n2/n1, где n1 и n2 - абсолютные показатели преломления первой и второй среды.
Абсолютный показатель преломления всех тел - твердых, жидких и газообразных - больше единицы и колеблется от 1 до 2, превосходя значение 2 только в редких случаях.
Показатель преломления зависит как от свойств среды, так и от длины волны света и увеличивается с уменьшением длины волны. Поэтому к букве п приписывают индекс, указывающий, к какой длине волны относится показатель. Например, для стеклаТФ-1 показатель преломления в красной части спектра составляет nC=1,64210, а в фиолетовой nG' =1,67298.
Показатели преломления некоторых прозрачных тел:
Воздух - 1,000292
Вода - 1,334
Эфир - 1,358
Спирт этиловый - 1,363
Глицерин - 1,473
Органическое стекло (плексиглас) - 1,49
Бензол - 1,503
Стекло крон - 1,5163
Пихтовый (канадский), бальзам 1,54
Стекло тяжелый крон - 1,6126
Стекло флинт - 1,6164
Сероуглерод - 1,629
Стекло тяжелый флинт - 1,6475
Монобромнафталин - 1,66
Стекло самый тяжелый флинт - 1,92
Алмаз - 2,42
Неодинаковость показателя преломления для разных участков спектра является причиной хроматизма, т, е. разложения белого света, при прохождении его через преломляющие детали - линзы, призмы и т. д.
Hosted by uCoz